Scaling customer reality, designing friction for AI agents, and lessons from Claude Code + AI sales reps
PM Daily Digest
2026-02-20
Scaling customer reality, designing friction for AI agents, and lessons from Claude Code + AI sales reps
By PM Daily Digest • February 20, 2026
This edition focuses on scaling customer feedback into business-impact decisions (with a clear maturity model), designing the right friction for AI agents, and concrete operating loops from AI product case studies (Claude Code/Cowork and ShowMe). It also includes meeting guardrails to prevent proposal-to-commitment drift, plus a practical AI PM tool stack.
Big Ideas
1) Customer feedback has maturity phases—and teams need to upgrade their approach as they scale
Bir Khan (VP Product at Enterpret) shared a maturity framework that maps how teams evolve in customer feedback handling as org size and feedback volume grow [footnoteRef:20]. [20: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

· Phase 1 (1–3 PMs): Intuition works; you can read most feedback (a few hundred items) and use simple tools like spreadsheets and quick AI summaries [footnoteRef:22]. [22: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

· Phase 2 (5–6 PMs, ~2k–5k feedback/year): Bias creeps in (over-relying on power users), LLMs struggle with context, and manual tagging becomes a recurring tax; insights arrive in batches—often after decisions are already made [footnoteRef:23]. [23: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

· Phase 3 (6+ PMs, >5k feedback/year): Manual workflows break; “volume-based” prioritization fails across segments (e.g., a few enterprise requests can matter more than many low-revenue requests); teams need a shared view of customer reality linked to revenue/retention/satisfaction metrics [footnoteRef:24]. [24: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

Why it matters: If your tooling stays “Phase 1/2” while your org moves into Phase 3, you’ll feel it as slower planning cycles, more manual work, and leaders becoming disconnected from what customers are saying [footnoteRef:25][footnoteRef:26]. [25: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [26: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

How to apply: Use the phase descriptions as a diagnostic in your next planning retro: identify your current phase and explicitly decide what you’ll stop doing manually (e.g., tagging) vs. what must become continuously updated intelligence [footnoteRef:27][footnoteRef:28]. [27: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [28: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

[image: https://img.youtube.com/vi/AMUe4wBvNpw/hqdefault.jpg] Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product (2:29)
2) Some “growth problems” are product problems in disguise
Andrew Chen’s heuristic from “20+ years working in startups”: most founders don’t have a growth problem—they have a product problem disguised as a growth problem [footnoteRef:34]. [34: 𝕏 post by @andrewchen]

Why it matters: It’s a reminder to pressure-test the underlying product value (and user reality) before defaulting to acquisition tactics.
How to apply: When growth stalls, run a quick product-reality check: what are the top recurring pain points, which are tied to high-value segments, and what’s the measurable impact of fixing them (see the tactical dashboards below) [footnoteRef:36][footnoteRef:37]. [36: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [37: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

3) In agentic AI, the “breakthrough” is often the interaction model—not raw capability
Sachin Rekhi frames a shift in AI tooling as a change in how tools interact with users:
· Claude Code: “controlled power” via confirmations, scoped access, and visible actions [footnoteRef:39]. [39: 𝕏 post by @sachinrekhi]

· OpenClaw: “frictionless autonomy,” with full system access and multi-step execution without approvals—bringing risks like unintended destructive actions, prompt injection with real consequences, silent data exposure, and zero audit trail [footnoteRef:41]. [41: 𝕏 post by @sachinrekhi]

He draws a parallel to Zoom: removing friction (no accounts, one-click links, simple setup) drove adoption [footnoteRef:42], but also enabled Zoom-bombing—because some “friction” was actually security [footnoteRef:43]. [42: 𝕏 post by @sachinrekhi] [43: 𝕏 post by @sachinrekhi]

Why it matters: PMs designing AI agents will win or lose on where they place checkpoints (approvals, scope limits, audit logs)—not just on model performance [footnoteRef:44][footnoteRef:45]. [44: 𝕏 post by @sachinrekhi] [45: 𝕏 post by @sachinrekhi]

How to apply: Treat “friction” as a design lever: remove it from onboarding and obvious flows, but add it back exactly at high-risk actions (data access, destructive commands, external communications) [footnoteRef:46][footnoteRef:47][footnoteRef:48]. [46: 𝕏 post by @sachinrekhi] [47: 𝕏 post by @sachinrekhi] [48: 𝕏 post by @sachinrekhi]

4) Roles are blurring: “everyone codes,” and generalists may be rewarded
In a conversation about Claude Code, Boris Cherny describes teams where PMs, designers, and others code, and argues many of the most effective people “cross over disciplines” [footnoteRef:50]. He also predicts roles may get “murkier,” to the point where “software engineer” gets replaced by “builder,” with “everyone’s going to be a product manager and everyone codes” [footnoteRef:52][footnoteRef:53]. [50: Head of Claude Code: What happens after coding is solved | Boris Cherny] [52: Head of Claude Code: What happens after coding is solved | Boris Cherny] [53: Head of Claude Code: What happens after coding is solved | Boris Cherny]

Why it matters: If your org is adopting AI coding tools, the competitive advantage may shift toward hybrid builders who can connect product, design, business, and user context—not just write code [footnoteRef:54]. [54: Head of Claude Code: What happens after coding is solved | Boris Cherny]

How to apply: Encourage (and reward) cross-functional “small loop” work: rapid prototyping, direct user contact, and shipping plus measurement—especially in early exploration [footnoteRef:55][footnoteRef:56]. [55: Head of Claude Code: What happens after coding is solved | Boris Cherny] [56: Head of Claude Code: What happens after coding is solved | Boris Cherny]

Tactical Playbook
1) Planning: prioritize feedback by business impact, not just volume
Enterpret’s guidance: traditional feedback analysis overweights counts (tickets/requests) and can be misleading; instead, quantify feedback with business context—revenue impact, NPS impact, and customer segment fit [footnoteRef:59]. [59: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

Step-by-step: 1. Define your weighting dimensions: revenue impact, NPS/satisfaction impact, and segment/ICP fit [footnoteRef:60]. 2. Connect data sources: integrate CRM/customer revenue data into your feedback system so requests can be ranked by revenue influence, not just number of mentions [footnoteRef:61]. 3. Build a planning dashboard: rank feature requests and complaints by revenue/retention/satisfaction potential (vs. “loudest voice wins”) [footnoteRef:62]. 4. Avoid “stale tagging” at scale: if manual tagging can’t keep up with tens of thousands of records, treat that as a system constraint (not a people problem) [footnoteRef:63]. [60: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [61: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [62: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [63: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

2) Scoping: use AI to accelerate discovery—but don’t skip direct user research
Khan’s stance is explicit: “Nothing beats talking to users directly”—AI doesn’t replace it [footnoteRef:65]. But AI can act as a force multiplier to validate hypotheses quickly and identify the right users to talk to [footnoteRef:66]. [65: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [66: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

Step-by-step: 1. Write your hypothesis and ask: “What are the top pain points users mentioned about [flow]?” to get an answer grounded in your existing feedback corpus [footnoteRef:67]. 2. Ask for targeting lists: “Who requested [integration] over the last six months?” so you can reach out for interviews [footnoteRef:68]. 3. For alpha/beta recruiting: ask for customers who complained about the current capability—they’re strong early-access candidates [footnoteRef:69]. 4. Before key customer meetings, ask for a short brief: top issues, past feature requests, and sentiment over time to reduce prep time [footnoteRef:70]. [67: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [68: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [69: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [70: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

3) Post-launch: make “before/after” dashboards a habit (so you can prove impact)
Khan argues many teams “ship the feature, celebrate and move on,” without building the muscle to learn from launches [footnoteRef:72]. The fix: launch-specific dashboards and before/after analysis to quantify outcomes [footnoteRef:73]. [72: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [73: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

Step-by-step: 1. Define the pre-launch baseline (tickets, request volume, revenue impact, sentiment) [footnoteRef:74]. 2. Ship. 3. Track the post-launch delta and package it for leadership. 4. Use a concrete narrative: “We were getting X complaints, shipped the fix, now we’re getting Y—here’s customer impact” [footnoteRef:75]. [74: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product] [75: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

Example metric: a login bug fix reduced support tickets from 2,000/week to 200/week (90% reduction) [footnoteRef:76]. [76: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

[image: https://img.youtube.com/vi/AMUe4wBvNpw/hqdefault.jpg] Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product (12:45)
4) Stakeholder management: prevent “proposals” from silently turning into commitments
A recurring pitfall from a leadership-meeting pattern: a proposal floated under urgency shifts from “what if we just…” to “okay, so we’re doing this,” and soon it’s on a slide as a commitment [footnoteRef:81]. Even with guardrails like “This isn’t commitment” and “We need to validate first,” “9 times out of 10, the first proposal becomes the plan” [footnoteRef:83][footnoteRef:84][footnoteRef:85]. [81: r/prodmgmt post by u/Direct_Donut287] [83: r/prodmgmt post by u/Direct_Donut287] [84: r/prodmgmt post by u/Direct_Donut287] [85: r/prodmgmt post by u/Direct_Donut287]

Step-by-step (lightweight meeting guardrail): 1. Label agenda items explicitly as Explore / Decide / Commit (don’t rely on verbal caveats alone) [footnoteRef:86][footnoteRef:87]. 2. Require a named validation step when someone says “we need to validate first” (owner + what “validated” means + when you’ll revisit) [footnoteRef:88]. 3. If you must set timing, separate “date for the date” (decision date) from delivery commitments [footnoteRef:89]. [86: r/prodmgmt post by u/Direct_Donut287] [87: r/prodmgmt post by u/Direct_Donut287] [88: r/prodmgmt post by u/Direct_Donut287] [89: r/prodmgmt post by u/Direct_Donut287]

5) Designing agent friction: relocate checkpoints instead of removing them
Rekhi’s punchline: “Friction isn’t the enemy. Badly placed friction is.” Winners won’t choose between speed and safety—they’ll redesign where friction lives so users get both [footnoteRef:91]. [91: 𝕏 post by @sachinrekhi]

Step-by-step: 1. List the agent’s high-risk actions (data access, deletions, sending messages, system changes) [footnoteRef:92]. 2. Decide which require confirmations and scoped access, and ensure visible actions and an audit trail in UX [footnoteRef:93]. 3. Remove friction elsewhere (setup, joining, onboarding), but treat security friction as intentional, not accidental [footnoteRef:94][footnoteRef:95]. [92: 𝕏 post by @sachinrekhi] [93: 𝕏 post by @sachinrekhi] [94: 𝕏 post by @sachinrekhi] [95: 𝕏 post by @sachinrekhi]

Case Studies & Lessons
1) Claude Code: a “build for the model six months from now” bet + adoption metrics
Lenny shared that Claude Code launched one year ago and “today it writes 4% of all GitHub commits, and DAU 2x’d last month” [footnoteRef:98]. [98: 𝕏 post by @lennysan]

A core product bet (from Cherny):
“We bet on building for the model six months from now, not for the model of today… we first started seeing [the] inflection with Opus 4.0 and Sonnet 4.0… that was when our growth really went exponential.” [footnoteRef:100] [100: 𝕏 post by @lennysan]

Takeaways for PMs: - If your product is gated by model capability, your roadmap may need to anticipate near-term model shifts [footnoteRef:102]. - Track adoption with concrete leading indicators (e.g., commit share, DAU acceleration) [footnoteRef:103]. [102: 𝕏 post by @lennysan] [103: 𝕏 post by @lennysan]

2) Cowork: spotting latent demand from “misuse,” then building a safer, more accessible product
Cherny describes a “latent demand” pattern: users “abuse” a product to do things it wasn’t designed for—and that teaches you where to take it next [footnoteRef:105]. [105: Head of Claude Code: What happens after coding is solved | Boris Cherny]

In Claude Code, they saw extensive non-coding use cases (e.g., growing tomato plants, genome analysis, recovering corrupted photos) and people “jumping through hoops to use a terminal” [footnoteRef:106]. That became a signal to build something purpose-built [footnoteRef:107]. [106: Head of Claude Code: What happens after coding is solved | Boris Cherny] [107: Head of Claude Code: What happens after coding is solved | Boris Cherny]

Implementation detail: Cowork was created by putting Claude Code into the desktop app; it included “a very sophisticated security system” with guardrails (including shipping a virtual machine), was built in ~10 days (entirely with Claude Code), and launched early while still “rough around the edges” to learn from feedback [footnoteRef:108]. [108: Head of Claude Code: What happens after coding is solved | Boris Cherny]

Takeaways: - Misuse is a discovery channel: watch for repeated “workarounds” that indicate demand [footnoteRef:109][footnoteRef:110]. - Accessibility often requires safety/guardrails, not just a new surface area [footnoteRef:111]. [109: Head of Claude Code: What happens after coding is solved | Boris Cherny] [110: Head of Claude Code: What happens after coding is solved | Boris Cherny] [111: Head of Claude Code: What happens after coding is solved | Boris Cherny]

3) ShowMe: multi-agent AI sales reps, staged rollout, and visibility as a trust mechanism
ShowMe’s origin: lots of website visitors weren’t converting; putting a human sales rep in front of visitors improved conversion, but it was too costly for unqualified leads—AI could filter and route accordingly [footnoteRef:113][footnoteRef:115]. They also found a free trial motion didn’t work due to a complex product and late “aha moment” [footnoteRef:116]. [113: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals] [115: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals] [116: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals]

What they built: AI “digital workers” that behave like teammates—sales skills (voice/text/video calls, screen share, demos, phone calls, messaging) plus operational skills (reporting via Slack/email, sharing metrics) [footnoteRef:117]. [117: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals]

How it evolved: - MVP in ~2 weeks: voice agent narrating selected product videos with Q&A; used by a first external customer despite clunkiness [footnoteRef:118]. - Expanded to support different buyer stages (e.g., pricing, customer stories) and added a realistic avatar (HeyGen) and a Zoom-like UI because users were already trained on video-call affordances—and talked more to the AI “as a human” [footnoteRef:119][footnoteRef:120][footnoteRef:121]. - Split complex conversations into multiple agents (greetings/discovery, qualifying, pitching) due to model limitations and voice-latency constraints [footnoteRef:122]. [118: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals] [119: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals] [120: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals] [121: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals] [122: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals]

Quality + rollout loop: - Start with a POC, validate what the customer is trying to prove, and roll out via A/B tests (often starting with lower-quality leads) before full rollout over 1–2 months [footnoteRef:123]. - Build customer confidence via visibility: share conversations in Slack, log into CRM, and provide dashboards so customers can see interaction quality—not just be told it’s good [footnoteRef:124]. - Use customer reviews to generate tests and rerun conversations until passing, building a growing “battery” of tests to preserve improvements over time [footnoteRef:125]. [123: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals] [124: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals] [125: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals]

4) Zoom: removing friction drove adoption—then security had to catch up
Zoom’s advantage versus Webex was removing friction (no accounts, one-click links, simpler setup, fast joins, effortless screen share), which drove adoption [footnoteRef:127]. But it also enabled Zoom-bombing, illustrating that some friction was actually security [footnoteRef:128]. [127: 𝕏 post by @sachinrekhi] [128: 𝕏 post by @sachinrekhi]

PM takeaway: Optimize friction placement, not friction elimination [footnoteRef:129]. [129: 𝕏 post by @sachinrekhi]

Career Corner
1) Become more of a generalist (and learn to cross boundaries)
Cherny’s advice: “try to be a generalist more than you have in the past,” noting that many effective engineers and PMs “cross over disciplines” (product + infra, product + design, business sense, user empathy) [footnoteRef:132]. He describes a team dynamic where “everyone codes,” including PM, EM, designer, finance, and data science [footnoteRef:133]. [132: Head of Claude Code: What happens after coding is solved | Boris Cherny] [133: Head of Claude Code: What happens after coding is solved | Boris Cherny]

How to apply: Pick one adjacent skill to deepen over a quarter (e.g., code enough to prototype, or do more user conversations) and use it to close a loop end-to-end on a small feature [footnoteRef:134]. [134: Head of Claude Code: What happens after coding is solved | Boris Cherny]

2) Practical portfolio signal: owning outcomes across startup + enterprise contexts
A job seeker summary (ProductManagementJobs) highlights an arc many PMs will recognize: - Founded a hyperlocal food delivery startup: managed a team of 20+, did 50+ customer interviews, built roadmap and GTM; learned from failure about product-market fit and unit economics [footnoteRef:136]. - Owned product frontend for an enterprise AI platform used by Fortune 500 supply chain teams, translating complex AI workflows into intuitive interfaces [footnoteRef:138]. [136: r/ProductManagementJobs post by u/anton_cat] [138: r/ProductManagementJobs post by u/anton_cat]

How to apply: If you’re job searching, capture this as an “outcomes + learning” narrative: what you shipped, what changed, and what you learned from failure (explicitly called out as valuable) [footnoteRef:139]. [139: r/ProductManagementJobs post by u/anton_cat]

Tools & Resources
1) An “AI PM tool stack” (one tool per category)
Aakash Gupta shared a tool stack used by top AI PMs, recommending you only need one tool per category [footnoteRef:142]. [142: [This is tool stack of the best AI PMs I’ve talked to:]

· Building
· Vibe Coding: Cursor, Claude Code, Windsurf, Replit, Warp [footnoteRef:143] [143: [This is tool stack of the best AI PMs I’ve talked to:]

· Prototyping: Lovable, Bolt, v0, Magic Patterns, Base44 [footnoteRef:144] [144: [This is tool stack of the best AI PMs I’ve talked to:]

· Productivity
· Dictation: Wispr Flow, superwhisper, Tactiq, Speechify [footnoteRef:145] [145: [This is tool stack of the best AI PMs I’ve talked to:]

· Meetings: Granola, Fathom, Otter.ai, tl;dv, Fireflies [footnoteRef:147] [147: [This is tool stack of the best AI PMs I’ve talked to:]

· General LLMs: Claude, ChatGPT, Gemini, Kimi, Grok [footnoteRef:148] [148: [This is tool stack of the best AI PMs I’ve talked to:]

· Automation
· Simple Agents: Zapier, Lindy, Relay, Bardeen, Parabola [footnoteRef:149] [149: [This is tool stack of the best AI PMs I’ve talked to:]

· Full-Featured Agents: n8n, make, Activepieces, Workato, Tray [footnoteRef:150] [150: [This is tool stack of the best AI PMs I’ve talked to:]

· Discovery
· User Research: NotebookLM, Perplexity, Elicit, Consensus, Grain [footnoteRef:151] [151: [This is tool stack of the best AI PMs I’ve talked to:]

· Customer Intelligence: Dovetail, Unwrap, Enterpret, Monterey, Viable [footnoteRef:152] [152: [This is tool stack of the best AI PMs I’ve talked to:]

2) Watch / read
· Product School (Enterpret VP Product): “Product Strategy Lessons from Notion, Stripe & Google” https://www.youtube.com/watch?v=AMUe4wBvNpw [footnoteRef:154] [154: Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product]

· Lenny’s Podcast (ShowMe): “Building AI Sales Reps…” https://www.youtube.com/watch?v=5jMleOuL7So [footnoteRef:155] [155: Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals]

· Lenny’s Podcast (Boris Cherny / Claude Code): “Head of Claude Code…” https://www.youtube.com/watch?v=We7BZVKbCVw [footnoteRef:156] [156: Head of Claude Code: What happens after coding is solved | Boris Cherny]

3) Reading for stakeholder-meeting dynamics
· “How Chaos Gets Codified” (linked from the Reddit thread): https://notthoughtleadership.substack.com/p/how-chaos-gets-codified-when-proposals [footnoteRef:158] [158: r/prodmgmt post by u/Direct_Donut287]

(You just need one in each category)
BUILDING
Vibe Coding
· Cursor, Claude Code, Windsurf, Replit, or Warp
· You want to be able to build your own operating system
· My guide: https://www.news.aakashg.com/p/pm-os
Prototyping
· Lovable, Bolt, v0, Magic Patterns, or Base44
· A prototype is a key pair to the PRD these days
· My guide: https://www.news.aakashg.com/p/ai-prototyping-tutorial
PRODUCTIVITY
Dictation
· Wispr Flow, superwhisper, Tactiq, Speechify
· You talk 2x faster than you type. Use that
· My guide: https://www.news.aakashg.com/p/speechify-aakash-bundle
Meetings
· Granola, Fathom, Otter.ai, tl;dv, or Fireflies
· Never take manual meeting notes again
· My guide: https://www.news.aakashg.com/p/ai-stack-pm
General LLMs
· Claude, ChatGPT, Gemini, Kimi, or Grok
· Find your favorites and master prompt engineering
· My guide: https://www.news.aakashg.com/p/prompt-engineering
AUTOMATION
Simple Agents
· Zapier, Lindy, Relay, Bardeen, or Parabola
· Start here if you’ve never automated a workflow
· My guide: https://www.news.aakashg.com/p/practical-ai-agents-pms
Full-Featured Agents
· n8n, make, Activepieces, Workato, or Tray
· Graduate here when simple feels limiting
· My guide: https://www.news.aakashg.com/p/ai-agents-pms
DISCOVERY
User Research
· NotebookLM, Perplexity, Elicit, Consensus, or Grain
· Use AI at every step to make it faster
· My guide: https://www.youtube.com/watch?v=rzAGo_XML1U
Customer Intelligence
· Dovetail, Unwrap, Enterpret, Monterey, or Viable
· Go from unstructured data to usable inputs
· My guide: https://www.news.aakashg.com/p/ai-customer-intelligence
Want a pro version of each?
↳ Grab my bundle: https://bundle.aakashg.com/
What would you add to the list?
[image: https://substack-post-media.s3.amazonaws.com/public/images/9fd5f814-b523-4386-af4e-a8e692eeee91_3600x4500.png]](https://substack.com/@aakashgupta/note/c-216964525)

Sources
1. Product Strategy Lessons from Notion, Stripe & Google | Enterpret VP of Product
1. 𝕏 post by @andrewchen
1. 𝕏 post by @sachinrekhi
1. Head of Claude Code: What happens after coding is solved | Boris Cherny
1. r/prodmgmt post by u/Direct_Donut287
1. 𝕏 post by @lennysan
1. 𝕏 post by @lennysan
1. Building AI Sales Reps: How ShowMe Orchestrates Voice, Video, and Multiple Agents to Close Deals
1. r/ProductManagementJobs post by u/anton_cat
1. [This is tool stack of the best AI PMs I’ve talked to:
(You just need one in each category)
BUILDING
Vibe Coding
· Cursor, Claude Code, Windsurf, Replit, or Warp
· You want to be able to build your own operating system
· My guide: https://www.news.aakashg.com/p/pm-os
Prototyping
· Lovable, Bolt, v0, Magic Patterns, or Base44
· A prototype is a key pair to the PRD these days
· My guide: https://www.news.aakashg.com/p/ai-prototyping-tutorial
PRODUCTIVITY
Dictation
· Wispr Flow, superwhisper, Tactiq, Speechify
· You talk 2x faster than you type. Use that
· My guide: https://www.news.aakashg.com/p/speechify-aakash-bundle
Meetings
· Granola, Fathom, Otter.ai, tl;dv, or Fireflies
· Never take manual meeting notes again
· My guide: https://www.news.aakashg.com/p/ai-stack-pm
General LLMs
· Claude, ChatGPT, Gemini, Kimi, or Grok
· Find your favorites and master prompt engineering
· My guide: https://www.news.aakashg.com/p/prompt-engineering
AUTOMATION
Simple Agents
· Zapier, Lindy, Relay, Bardeen, or Parabola
· Start here if you’ve never automated a workflow
· My guide: https://www.news.aakashg.com/p/practical-ai-agents-pms
Full-Featured Agents
· n8n, make, Activepieces, Workato, or Tray
· Graduate here when simple feels limiting
· My guide: https://www.news.aakashg.com/p/ai-agents-pms
DISCOVERY
User Research
· NotebookLM, Perplexity, Elicit, Consensus, or Grain
· Use AI at every step to make it faster
· My guide: https://www.youtube.com/watch?v=rzAGo_XML1U
Customer Intelligence
· Dovetail, Unwrap, Enterpret, Monterey, or Viable
· Go from unstructured data to usable inputs
· My guide: https://www.news.aakashg.com/p/ai-customer-intelligence
Want a pro version of each?
↳ Grab my bundle: https://bundle.aakashg.com/
What would you add to the list?
[image: https://substack-post-media.s3.amazonaws.com/public/images/9fd5f814-b523-4386-af4e-a8e692eeee91_3600x4500.png]](https://substack.com/@aakashgupta/note/c-216964525)
rId170.png
The Tool Stack of 10x Al PMs

User Research

Al-powered research and synthesis

NotebookLM
A\

Grounded research assistant.
Zero hallucination on your docs

Perplexity
Real-time web research with cited

sources

e Elicit

Academic research assistant. Finds
and synthesizes papers

Consensus

Evidence-based answers from
scientific literature

(‘ Grain

Clips and highlights from user
interviews

()

No-code automation builders

@ Zapier
The automation default. Massive

app library

<> Lindy
\ Personal Al assistant. Learns your
patterns

between steps
Bardeen

Browser automation. Scrapes
without APIs

Parabola

Visual data workflows. Spreadsheet
comfort

@ Relay
Human-in-the-loop. Al enriches data

Customer Intelligence

Aggregating intelligence from all sources

Dovetail

Becoming the default customer
intelligence platform

Enterpret

Custom models that connect
feedback back to revenue

Unwrap

Real-time feedback analysis
integrated with your stack

w Monterey

Pulls feedback straight into
product decisions

Viable

Speed reader for support tickets.
Surfaces themes

DISCOVERY

- i
Open-source powerhouse. Self-host

Advanced workflow orchestration

for full control

make.com

Visual complexity. Handles
branching logic others can't

Activepieces

Open-source alternative with
cleaner UX

Workato

Enterprise-grade. When IT needs
governance

Tray.io
Low-code for technical teams

Create functioning features and apps

Cursor

Your coding partner. Understands
your entire codebase

Claude Code

Best for complex multi-file tasks

Windsurf

and context
Replit

Zero setup browser coding. Great
for quick scripts

Warp

Al-native terminal. Natural
language for command-line

Terminal agent that executes plans.

Al-native IDE. Strong on refactoring

BUILDING

| PRODUCTIVITY

Prototyping

Building prototypes without design resources

Lovable

Passed $100M ARR fast for a
reason

Bolt

Browser container tech. See
changes as you prompt

O
Best component quality. Vercel's

design taste baked in
Magic Patterns
2%

Ul components from text. Great
for frontend

4, Based44
= Bestfor full apps and prototypes

Dictation

Voice-to-text everywhere

Wispr Flow

System-wide Mac dictation. Works
in every app

Superwhisper

On-device privacy. Voice never
leaves computer

0 Tactiq
Chrome extension. Works inside
browser tools

Speechify

Reverse dictation. Reads content
at 2x speed

., MacWhisper
@ P

Local Whisper model. Free and
private

Foundational Al assistants

Claude

Best for writing, analysis, and
complex reasoning; cowork + code

%
@ ChatGPT
<

Most versatile. Strong growth with
Codex

Gemini

GPT-3.1is the new model king again,
competing on all vectors

0 Kimi
Open source king that is at the price

efficiency frontier
Grok

Real-time X/Twitter integration. Fast
iteration

Automated note-taking and action items

Ol

Meetings

Granola
Al notes that blend with yours

Fathom

Real-time transcription. Instant
summaries

Otter.ai
Collaborative transcription. Speaker ID

tl;dv

Meeting recorder. Clips over full
recordings

Fireflies

Searchable transcript library across all
meetings

Want the high-res version? Visit product-growth.com: Join 215,000+ people & subscribe. 47

Aakash Gupta

S

f?‘

rId29.jpg
Stop letting the
loudest
customers
dictate your
roadmap

